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A simple model system is introduced for demonstrating how a single photon source might be used to
transduce classical analog information. The theoretical scheme results in measurements of analog source
samples that are �i� quantized in the sense of analog-to-digital conversion and �ii� corrupted by random noise
that is solely due to the quantum uncertainty in detecting the polarization state of each photon. This noise is
unavoidable if more than 1 bit per sample is to be transmitted and we show how it may be exploited in a
manner inspired by suprathreshold stochastic resonance. The system is analyzed information theoretically, as it
can be modeled as a noisy optical communication channel, although unlike classical Poisson channels, the
detector’s photon statistics are binomial. Previous results on binomial channels are adapted to demonstrate
numerically that the classical information capacity, and thus the accuracy of the transduction, increases loga-
rithmically with the square root of the number of photons, N. Although the capacity is shown to be reduced
when an additional detector nonideality is present, the logarithmic increase with N remains.
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Extensive efforts to establish practical quantum comput-
ers incorporating quantum communication and/or cryptogra-
phy have led toward the development of reliable single pho-
ton sources �SPS� �1,2�. While much research in this area is
targeted toward quantum information processing, and the
concept of qubits �3�, the impending availability of a reliable
SPS may also have broader application.

Here we introduce and analyze a paradigm of quantum
photonic information processing that falls beyond the scope
of classical Poisson light �4–7�, sub-Poisson squeezed light
�8�, and the usual focus of quantum information theory �3�.
We consider a model for the transduction of classical infor-
mation via a quantum optical channel and a classical detec-
tor.

In our model, an information source directly modulates a
SPS that emits photons with equal energy at a known con-
stant rate. Unlike the Poisson or sub-Poisson statistics of a
classical optical source, this results in deterministic photon
release counts. Significant recent experimental progress �2,9�
indicates that an SPS may soon offer the possibility of modu-
lation of the information source onto quantum properties of
individual photons, namely, the polarization angle. Thus, the
focus of this Rapid Communication is on quantifying the
potential benefits from exploiting such a controllable SPS
polarization angle in sensing applications.

We model the information source to be sensed
�the “signal”� using the standard information theoretic ap-
proach; i.e., we treat the signal as a discrete time random
variable. While our system results in a quantum information
channel, it is capable of transmitting classical information, as
considered, e.g., in �10,11�. This is similar to the scenario in
�10,12� where two photons are considered in the context of
the Holevo bound �3�. However, it differs in that we specify
that an arbitrary �but constant� number of photons, N, are
used for a single measurement of the signal, where each

photon is produced independently and unentangled from a
SPS. Thus, the N photons produced can be considered as a
product input state �13�.

The second part of the model signal transduction system
is a classical photon detector. We assume several standard
practical constraints, i.e., that the “receiver” consists of a
classical horizontal polarizer and detector capable only of
counting the number of photons received in a fixed duration,
ts, as in �4,5�. We further assume that the source sample
period is also equal to ts, so that the source and receiver are
synchronized in time. We quantify performance information
theoretically in bits per source sample or bits per photon.

While practical photon counters are limited by ineffi-
ciency in the conversion of photons to electrons, and the
photon count is a random variable for a given number that
are transmitted �14�, we consider only an ideal photon
counter. We make this assumption because we aim to find the
upper limit to the sensing accuracy of the scheme. Other
important losses in a practical system will lead to lesser per-
formance; our results can be interpreted as a quantification of
the “best case scenario,” which is the typical utility of infor-
mation theory.

We first consider a relatively trivial scheme. Two ways of
achieving 1 bit per source sample in time window ts include
either transmitting or not transmitting a photon—in which
case the polarizer is unnecessary—or to transmit either hori-
zontally or vertically polarized photons. This may be viewed
as a limiting case of classical on-off keyed modulation.
Clearly, this approach would be limited by the controllability
of the SPS and the readout/reset speeds of the detector. It
may not be feasible to readout the photon count at the same
rate as photons are produced, or it may only be feasible to
produce N�1 equally polarized and unentangled photons
during time ts. If only horizontally or vertically polarized
photons are used, this would be inefficient and redundant and
reduce the rate to 1 /N bits per photon �although remaining
equal to ts

−1 bits per second�.
We now consider whether the number of bits per photon*mark.mcdonnell@unisa.edu.au
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can be improved upon if the polarization angle during each
sample period, ts, can be set to any desired angle between
vertical and horizontal. In this case, detection or nondetec-
tion of transmitted photons is no longer deterministic and has
a probability that depends on the original polarization angle.
However, the actual photon count can be any of the integers
in the range 0 , . . . ,N, a fact that can be exploited to obtain
O� log�N�

N � rather than 1 /N bits per photon.
We assume that in a duration ts the SPS produces N un-

entangled photons all perfectly polarized to some real-valued
angle to horizontal, �. Let the state of a single photon polar-
ized to angle � be the qubit

��� = cos����H� + sin����V� , �1�

where �H� represents horizontally polarized and �V� repre-
sents vertically polarized.

Let the polarization angle of the detector relative to hori-
zontal be the independent continuous random variable �,
with support S�= �0,a�, a� �0, �

2 �. When each photon passes
through the polarizer, the probability that it is detected, con-
ditioned on �, and �=� is

Pd����� = cos2�� − ��, � � �0,
�

2
� . �2�

Let the density of � be f����. We define Fc�a�
=	0

af����cos�2��d� and Fs�a�=	0
af����sin�2��d�. From

Eq. �2�, the probability of detecting any individual photon
with polarization angle � is given by

P̄d��,a� = 

S�

f����Pd�����d� = 0.5�1 + cos�2��Fc�a�

+ sin�2��Fs�a�� . �3�

Let y be the random variable representing the count of
photons that propagate through the horizontal polarizer after
N are transmitted with polarization angle �, and let the dis-
tribution of source samples have a cumulative distribution
function �CDF�, F����. For N�1, the channel becomes a
binomial channel �15�, since as the photons are unentangled,
the probability that n are counted at the detector is given by
the binomial distribution,

Py���y = n��,a� = �N

n
�P̄d��,a�n�1 − P̄d��,a���N−n�, �4�

where n=0, . . . ,N. The mean number of photons counted for

angle � will be N̄=NP̄d�� ,a�.
The information theoretic limits of the performance of

this channel can be found by maximizing the mutual infor-
mation, I�� ;y�, between the random variables � and y �16�.
The result is the channel capacity,

C ª max
F�����

I��;y� . �5�

The units of C and I�� ;y� are bits per source sample, where
here each sample results in the emission of N photons all
polarized to the same angle �. Converting to bits per photon
means dividing C or I by N, and to bits per second means
dividing by ts. Note the channel of Eq. �4� with fixed N is a

different kind of photonic “binomial channel” to that consid-
ered in �6�, where the number of photons produced at a
source is modeled as a controlled discrete random variable,
N, with different values representing different source sym-
bols, while photon detection probabilities are constant. In
contrast, here N is a constant and the photon detection prob-
ability is modulated by the angle �.

Many channel capacity problems include constraints on
the source distribution �16�. For example, �7� considers
maximum amplitude and average power constraints for stan-
dard Poisson light. Here we have both constraints implicitly
via the maximum number of photons per sample, N. Further-
more, we now show that the mutual information between �

and y is equal to that between the variable tª P̄d�� ,a� and y,
and that allowing for uncertainty in the receiver �i.e., a�0�
is equivalent to placing additional amplitude constraints on t.

It is straightforward to show that t= P̄d�� ,a� has a single
maximum for �� �0,� /2�,

�o�a� ª 0.5 arctan�Fs�a�
Fc�a�

� . �6�

This attains maximum probability of detection

tmax�a� ª P̄d��o,a� = 0.5�1 + �Fc�a�2 + Fs�a�2� � 1. �7�

We also have at the extremes of horizontally or vertically

polarized photons P̄d�0,a�=0.5�1+Fc�a�� and P̄d�� /2,a�
=0.5�1−Fc�a��, and the minimum probability of detection is

tmin�a�ªminP̄d�0,a� , P̄d�� /2,a��	0.
The convexity of t with respect to � also implies that for

a�0 some polarization angles induce the same conditional
output distribution—that is, they produce ambiguous out-
comes at the receiver. However, it also means that on the
interval t� �tmin, tmax� there exists a one-to-one continuous
and invertible deterministic mapping t↔�. That is, t is a
monotonic function of �. Thus, we must have I�� ;y�
= I�t ;y�, and the channel is equivalent to one with transition
probabilities

Py�t�y = n�t� = �N

n
�tn�1 − t��N−n�, t � �tmin�a�,tmax�a�� .

�8�

If polarization angles on the full interval �0,� /2� are used,
then any pair of angles that produce the same t are inter-
changeable and can be treated as the same input sample.

The capacity of the binomial channel of Eq. �8�
�for a=0, i.e., no constraints on t� has been considered in
several contexts �15,17–19�, and it is known that in the large
N limit

lim
N→


C = 0.5 log2�N�

2e
�ª C
. �9�

This is a lower bound to the capacity of the binomial channel
of Eq. �8� when N is finite �15�. Straightforward adaptation
of analysis in �18� shows that this asymptotic capacity, C
, is
achieved when � is a continuous random variable uniformly
distributed between 0 and � /2.
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We now address the problem of finding channel capacity
for finite N and a	0. Since we have a discrete memoryless
channel, with an output consisting of N+1 states, capacity is
achieved when only a finite number of angles, M �N+1, are
used �16� �corollary 3, p. 96�. This means we can label the
capacity achieving input distribution for the channel of Eq.
�8� as a probability mass function, with real-valued support
given by t1 , . . . , tm , . . . , tM� and mass values
P��1� , . . . , P��m� , . . . , P��M��. Since the transition probabili-
ties are dependent on the support points, the capacity prob-
lem can be written as

C = max
M,P��1�,. . .,P��m�,t1,. . .,tM�

I�t;y� , �10�

where M �1, �m=1
M P��m�=1, and tm� �0,1�. Although mu-

tual information is convex in the probabilities, P��m�, it is
not convex in t and solving using standard gradient descent
methods does not guarantee a global optima. However, sev-
eral numerical approaches to solving such capacity problems
exist. These all rely on the following property. Define
i�tm�ª�n=0

N P�n � t= tm�log2�P�n � t= tm� / Py�n��, where
Py�n�=�m=1

M P��m�Py�t=tm
�n � t= tm�. By �16� �theorem 4.5.1�, a

necessary and sufficient condition for achieving channel ca-
pacity for any given set of fixed tm of size M is that

i�tm�� =C ∀ tm s.t. P��m� � 0

�C ∀ tm s.t. P��m� = 0.
� �11�

Consequently, capacity is achieved if and only if all maxima
of the function i�t� are achieved by a support point t= tm and
all support points achieve a maxima. This fact allows convex
optimization techniques to be used, thus, guaranteeing global
convergence �15,19�. We used CVX, a package for specifying
and solving convex problems �20�.

The result of such a numerical optimization for this chan-
nel is shown with a solid line in Fig. 1 for the case where the
detector’s angle is deterministic �a=0�. The results are in
agreement with �15,19�. The capacity as a function of a for
various values of N is shown in Fig. 2 for uniformly distrib-

uted detector angles. In this case tmax�a�=0.5�1+sin�a� /a�
and tmin�a�=0.5�1−sin�2a� /2a�. While clearly decreasing as
a increases �which can be thought of as increasing detector
noise� the capacity still increases with increasing N and is
larger than 1 bit when N=63 even at a=0.5�.

Figure 1 also shows two known lower bounds to the ca-
pacity. The first, C
 �given by Eq. �9��, significantly under-
estimates the true capacity. The second, given in closed form
in Eq. �13� in �19� and denoted here as IL, is much tighter. In
the photonic binomial channel context, it is equivalent to the
mutual information that results by ensuring the source polar-
ization angle has a mixture distribution that is absolutely
continuous and uniformly distributed on �0, �

2 � and has dis-
crete mass points at angles 0 and �

2 , each with some prob-
ability Q�0.5. This means that while the capacity is
achieved by a purely discrete distribution, nearly the same
performance can be achieved using analog modulation over
all polarization angles.

Further verification can be obtained as follows. If an ar-
bitrary output distribution Py�n� is chosen, the global maxi-
mum of i�t� is an upper bound to capacity �21�. Finding a
close upper bound requires a judicial choice of Py�n�. As an
example, let

Py
U�n� =�

R

1 + 2�R − Q�
n = 0,N

�N

n
�B�n + 0.5,N − n + 0.5�

��1 + 2�R − Q��
n = 1, . . . ,N − 1,�

�12�

where B�· , ·� is a beta function, Q= ��N+0.5�
����N+1� , and R=� 2e

N� .
Following �21� we write

I�x;y� � IU ª max
t

�
n=0

N

P�n�t�log2�P�n�t�
Py

U�n�
� , �13�

where P�n � t� is given by Eq. �8�. The upper bound IU can be
easily calculated numerically, and is shown in Fig. 1, and as
can be seen, it verifies the numerical calculation of capacity.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

Number of photons per sample, N

C
ha

nn
el

ca
pa

ci
ty

(b
its

pe
r

sa
m

pl
e)

C
C∞
I
L

I
U

FIG. 1. Channel capacity, C, for a perfect detector �a=0� as a
function of increasing number of photons per source sample, N �N
is defined only for integer values, but a solid line is used as an aid
to visibility�. Also shown is C
, i.e., the lower bound to the channel
capacity given by Eq. �9�, which asymptotically approaches capac-
ity as N→
, a better lower bound to the channel capacity, IL �de-
scribed in the text�, and an upper bound, IU.
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FIG. 2. Channel capacity for various N as a function of the
maximum angle, a, of a randomly varying �uniformly distributed
�� angle in the detector’s polarizer �i.e., increasing detector noise�.
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Our results mean that the achievable mutual information
increases with N as O�0.5 log2�N��—cf. Eq. �9�. However,
since the number of bits per photon decreases to zero as N
increases, exploiting single photon polarization is of poten-
tial benefit in terms of bits per second only when the source
sample does not change before more than one identically
polarized photon is emitted. This fact may also be exploited
in a hypothetical multiphoton source that releases N identi-
cally polarized photons simultaneously. In this case, capacity
is increased in an analogous way to utilizing multilevel pulse
amplitude modulation �PAM� in conventional communica-
tion systems. The difference is that the choice of the number
of PAM amplitudes depends on channel noise, whereas for
the SPS it depends on N, and indirectly on the quantum
uncertainty in polarized photon detection.

Indeed, the model described here can be thought of as
benefiting from randomness, in a similar sense to suprath-
reshold stochastic resonance �SSR� �18,22�. The model of

�18,22� has the same channel as Eq. �4�, except P̄d�� ,a� is
replaced by the CDF of additive noise. Mathematical equiva-
lence �for a=0� follows, since photon detection is a random
process equivalent to the corruption of � by additive random
noise, � �− �

4 , �
4 �, with probability density function

f��=cos�2�, followed by binary threshold detection such
that the output is �H� when �+�

�
4 . However, unlike

�18,22�, here SSR cannot be observed since the randomness
is not due to noise and the variance of  cannot be changed
�SSR might instead be observed if suboptimal input signals
were used�. Nevertheless, it is only the uncertainty in the
polarization state of each photon that allows an N state quan-
tization �digitization� of each sample, rather than a binary
outcome. While a noisy signal results, like SSR this is offset
by gaining more than 1 bit per source sample.

A significant outcome of our analysis is that we have
shown that continuously distributed polarization angles can
achieve performance close to capacity. Thus, the system may
be highly suitable for the transduction of analog information
sources. Indeed, if each photon is thought of as a “noisy
sensor,” our hypothetical system bears similarities to several
macroscopic frameworks studied in the signal processing
literature—i.e., the “refining sensor network” of �23� or the
“stochastic pooling network” of �19�.
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